Vorwort

Die erste Auflage von "Statistik im Sport – Grundlagen, Verfahren, Anwendungen" ist 1975 zunächst unter dem Titel "Grundkurs Statistik" in der Schriftenreihe "Forschungsmethoden in der Sportwissenschaft" erschienen. In dieser Zeit war die Sportwissenschaft im Aufbruch: Die ersten Professuren an deutschen Universitäten waren jünger als 5 Jahre (vgl. Willimczik, 2001). Es war die Zeit, in der Lehrkräfte und Studierende¹ sich insbesondere mit empirischen Forschungsmethoden vertraut machen mussten. Dies hat die Konzeption des damaligen Statistik-Buches geprägt. Ziel war es, neben den einzelnen statistischen Verfahren Verständnis für die Grundlagen statistischen Denkens zu wecken, Möglichkeiten von Forschung aufzuzeigen und auf Gefahren hinzuweisen, vor allem aber zur empirischen Arbeit im Anwendungsfeld Sport zu motivieren.

In der Zwischenzeit hat sich die Sportwissenschaft zu einer anerkannten Wissenschaft entwickelt; die Wissenschaftlichkeit ihrer Arbeit steht außer Zweifel. Dies ist vor allem das Ergebnis einer fundierten forschungsmethodischen Ausbildung durch erfahrene Lehrkräfte.

Konzeption und Inhalte der forschungsmethodischen Lehre sind zum Teil gleichgeblieben, sie haben sich zum Teil aber auch erheblich verändert. Gleich geblieben ist zum Ersten die Relevanz der Statistik für sportwissenschaftliche Fragestellungen. Entsprechend bleibt Statistik ein unaustauschbarer Inhalt des Studiums. Nicht zu verkennen ist zweitens auch, dass es Studierenden schwerfällt, die Anwendungsmöglichkeiten des formalen Instruments "Statistik" für praktische Fragen des Sports zu erlernen. Dies fordert weiterhin die Herausgabe eines auf Sport bezogenen Fachbuches. Durch die Entwicklung von Statistiksoftware noch verstärkt hat sich drittens die Gefahr, statistische Verfahren unreflektiert anzuwenden. Dem soll in diesem Buch dadurch entgegengewirkt werden, dass "Rezeptesammlungen", wie sie durch statistische Softwareprogramme angeboten werden, durch Hintergrundwissen ergänzt werden. Dazu gehören eine Herleitung der einzelnen Verfahren, Hinweise auf die zu beachtenden Anwendungsvoraussetzungen sowie auf mögliche "Fehler und Fallen" bei statistischen Analysen. Anwender von Statistik sollen verstehen, was sie anwenden!

Die zentralen Änderungen gegenüber der Erstauflage von 1975 gehen auf die bekannte rasante Entwicklung der elektronischen Datenverarbeitung zurück. Notwendige Änderungen der ursprünglichen Version sind bereits in der vollständig überarbeiteten Neuauflage von 1992 unter dem Titel "Statistik im Sport – Grundlagen, Verfahren, Anwendungen" vorgenommen worden. Unter Mitarbeit von Oliver Höner sind seinerzeit vor allem Outputs aus der Statistiksoftware IBM SPSS eingearbeitet und differenziert erklärt worden.

Soweit möglich, wird in diesem Buch auf geschlechtsneutrale Formulierungen zurückgegriffen. An den Stellen, an denen dies die Lesbarkeit verringert, wird manchmal auch das generische Maskulinum verwendet. Gemeint sind in diesen Fällen immer auch Frauen.

Die zentralen Neuerungen dieser Auflage sind:

- Wegen der teils rasanten Weiterentwicklung der Sportwissenschaft mit der Folge, dass die Forschungsprojekte an Komplexität zugenommen haben, ist die Auswahl der statistischen Verfahren erweitert worden. Nachdem 1992 bereits die partielle und die multiple Korrelation sowie mehrfaktorielle Varianzanalysen aufgenommen worden sind, enthält "Statistik im Sport" in der Neuauflage ein neues Kapitel, in dem kurz in das "Allgemeine Lineare Modell" eingeführt wird.
- Eine teilweise starke Kürzung bei der Darstellung der einzelnen Verfahren ist dadurch möglich geworden, dass die elektronische Datenverarbeitung bestimmte Berechnungen überflüssig macht.
- Die größte Neuerung besteht darin, dass reale Daten aus einem großen Forschungsprojekt, der MODALIS-Studie (Willimczik, Voelcker-Rehage & Wiertz, 2006), bereitgestellt werden. Anhand dieser Daten wird die Möglichkeit geboten, Übungsaufgaben online unter realen Bedingungen zu bearbeiten (vgl. auch Kap. 1.4).

Diese Neuauflage wird in Co-Autorenschaft herausgegeben. An die Seite des emeritierten früheren Alleinautors Klaus Willimczik ist Fabienne Ennigkeit getreten, derzeit wissenschaftliche Mitarbeiterin am Sportinstitut der Universität Frankfurt. Sie war vor allem für die Erstellung der Online-Übungsaufgaben zu den MODALIS-Daten verantwortlich. Den Co-Autoren erscheint dies als eine ideale Verbindung von langjähriger Erfahrung einerseits und Kenntnissen in der Anwendung und Lehre in der gegenwärtigen Forschungspraxis andererseits. Unser gemeinsamer Dank gilt Frau Renate Schubert für die sorgfältige Anfertigung einer Reihe von Zeichnungen, Herrn Dietmar Pollmann für die Durchführung eines Probelaufs der Online-Übungsaufgaben im Rahmen eines Seminars und besonders Frau Nina C. Seidenberg für das Korrekturlesen, umfangreiche Formatierungsarbeiten sowie wertvolle inhaltliche und formale Anregungen.

Darmstadt, Herbst 2018 Klaus Willimczik & Fabienne Ennigkeit

1 Einleitung: Grundlagen der Statistik

1.1 Die statistische Fragestellung im Forschungsprozess

Die Statistik ist aus dem Alltagsleben her bekannt und berüchtigt zugleich. Bekannt ist sie vor allem durch die statistischen Veröffentlichungen von Behörden, Verbänden, Vereinen, Parteien; berüchtigt ist sie wegen ihres zum Teil missbräuchlichen Einsatzes als Manipulationsinstrument. Der schlechte Ruf der Statistik in der breiten Öffentlichkeit und in der Folge eine Karikierung statistischer Aussagen ist zurückzuführen auf eine Unkenntnis der statistischen Arbeitsweise bzw. eine bewusste Fehlinterpretation.

Der Wunsch nach Verwendung der Statistik sowie ihr Missbrauch und ihre Karikatur in der Öffentlichkeit weisen gleichermaßen auf die Notwendigkeit hin, sowohl die statistischen Verfahren selbst als auch die zu beachtenden Anwendungsvoraussetzungen und Gesichtspunkte der Interpretation bekannt zu machen, wie sie in der wissenschaftlichen Statistik erarbeitet worden sind.

Statistische Methoden weisen einen breiten Anwendungsbereich auf. Sie eignen sich zur

- 1. übersichtlichen Darstellung vorliegender Einzeldaten (Einzelergebnisse), vorzugsweise in Tabellen und Grafiken,
- 2. Charakterisierung von Daten mit Hilfe von Durchschnittswerten und Streuungsmaßen,
- Bestimmung von Zusammenhängen von Merkmalen oder Unterschieden zwischen Gruppen,
- 4. Verallgemeinerung im Sinne des induktiven Schlusses und
- 5. Quantifizierung des Risikos bei Verallgemeinerungen.

Einfache statistische Methoden (1. und 2.) werden im Schul- und Vereinssport gleichermaßen angewendet. Zu nennen sind geordnete Ergebnislisten von Sportfesten, die Angabe von Durchschnittsleistungen oder das Zählen von Vereinsmitgliedern, Teilnehmern an Wettkämpfen, Volksläufen, Trimm-Dich-Aktionen usw.

Fragen nach Zusammenhängen zwischen zwei oder mehr Merkmalen (3.) erstrecken sich sowohl auf Probleme innerhalb einer sportwissenschaftlichen Teildisziplin als auch auf solche zwischen den Teildisziplinen. Interessant sind z. B. Fragen nach dem Zusammenhang von motorischen Fähigkeiten und sportmotorischen Fertigkeiten (Bewegungslehre), von motorischen und kognitiven Persönlichkeitsmerkmalen (Bewegungslehre/Sportpsychologie), von Körperkoordination und sozialem Milieu (Bewegungslehre/Sportsoziologie) oder von Aggressivität in Mannschaftsspielen und der Spielstärke der beteiligten Mannschaften (Sportpsychologie). Auch die Frage nach Unterschieden zwischen Gruppen (3.) ist in allen sportwissenschaftlichen Teil-

disziplinen anzutreffen. In diesem Sinne kann ein Vergleich der Intervall- und der Dauermethode hinsichtlich ihrer Effektivität oder des mentalen, des praktisch-mentalen und des praktischen Trainings genauso durchgeführt werden wie die Überprüfung der Wirksamkeit von sportbezogenen Sonderprogrammen für verhaltensauffällige Kinder. Anzuführen sind hier aber auch Fragestellungen zu Unterschieden hinsichtlich Fertigkeiten und Fähigkeiten zwischen den Geschlechtern.

Die Möglichkeit und Probleme des induktiven Schließens (4.) und der Quantifizierbarkeit des Risikos bei Verallgemeinerungen (5.) sind heutzutage durch die Hochrechnungen bei Wahlen bekannt und anerkannt. Die Hochrechnung ist eine Vorhersage des (unbekannten) Gesamtendergebnisses aufgrund des bekannten Ergebnisses einer kleinen Auswahl (repräsentativer) Stimmbezirke. Eine solche Vorhersage ist nicht ohne das Risiko eines Irrtums möglich. Die Quantifizierung dieses Risikos bzw. der Zuverlässigkeit und der Präzision der Schätzung wird durch Angaben von Vertrauensgrenzen erreicht, in denen das Endergebnis mit einer bestimmten Wahrscheinlichkeit zu erwarten ist. In vergleichbarer Weise geht die Statistik vor, wenn sie Aussagen über Zusammenhänge von Merkmalen oder über Unterschiede von Personen macht, denn auch diese Aussagen werden eigentlich immer (nur) an einzelnen Gruppen (Stichproben) ermittelt und dann verallgemeinert. Damit ist aber auch für die Überprüfung von Zusammenhängen (z.B. zwischen motorischen und kognitiven Merkmalen) oder von Unterschieden (z. B. zwischen der Effektivität des mentalen und des praktischen Trainings) das Risiko anzugeben, das die Verallgemeinerung eines Untersuchungsergebnisses einschließt.

Der Rückgriff auf statistische Methoden ist nur vor dem Hintergrund eines empirischanalytischen Wissenschaftsverständnisses sinnvoll. Und auch innerhalb dieser Forschungsrichtung hat die Statistik auf den Stufen des Forschungsprozesses eine unterschiedliche Bedeutung. Akzentuierend lässt sich der Forschungsprozess in fünf Stufen einteilen:

- Problemstellung: In der Erfahrungswissenschaft werden in der Regel auf der Grundlage theoretischer Überlegungen sowie bereits vorliegender empirischer Studien – Problemstellungen als empirisch überprüfbare Hypothesen formuliert. Es werden Annahmen über Sachverhalte gemacht, die durch eine Untersuchung überprüft werden sollen. Eine solche Annahme könnte z. B. sein, dass für das Volleyballspielen praktisch-mentales Training effektiver ist als rein mentales oder rein praktisches Training.
- 2. Untersuchungsplanung: Sie beinhaltet die Konstruktion einer Untersuchung, mit der die aufgestellten Hypothesen überprüft werden sollen. Dazu gehört u. a. die Auswahl der Versuchspersonen und Merkmale, die der Untersuchung zugrunde gelegt werden sollen. Für die Merkmale sind die Untersuchungsmethoden festzulegen und ist der Fehler zu bestimmen, mit denen die verwendeten Messverfahren behaftet sind. Weiterhin ist eine Entscheidung über die zur Überprüfung der jeweiligen Fragestellung zu wählenden statistischen Tests zu treffen. Für die

Überprüfung verschiedener Formen des Volleyballtrainings sind z. B. die Programme für die verschiedenen Trainingsgruppen zusammenzustellen, sind Tests für die Überprüfung der komplexen Fertigkeit "Volleyballspielen" zu konstruieren und zu überprüfen und ist ein geeignetes statistisches Verfahren zur Absicherung auszuwählen.

- 3. *Versuchsdurchführung*: Sie umfasst die gesamte Realisierung der Untersuchungsplanung.
- 4. Statistische Analyse: Sie umfasst die Anwendung aller statistischer Verfahren, z. B. die Darstellung der einzelnen Leistungen und die Durchführung eines Mittelwertvergleichs zur Überprüfung der Effektivität unterschiedlicher Formen eines Volleyballtrainings.
- 5. Ergebnisinterpretation und -diskussion: Hier werden die erzielten Ergebnisse mit bereits vorliegenden Erkenntnissen verglichen bzw. in bestehende Theorien eingeordnet. Zudem werden Stärken und Schwächen der Untersuchung diskutiert und es wird ein Ausblick auf weiterführende Forschungsfragen gegeben.

Die aufgeführten Stufen des Forschungsprozesses sind nicht unabhängig voneinander, sondern weisen starke wechselseitige Abhängigkeiten auf. Entsprechend sind statistische Methoden nicht auf einen Arbeitsschritt innerhalb des Forschungsprozesses begrenzt, sondern strahlen auf die vier anderen Stufen aus. So muss für die Aufstellung von statistischen Hypothesen gefordert werden, dass sie so formuliert sind, dass über ihre Richtigkeit statistisch entschieden werden kann. Innerhalb der Versuchsplanung kommt der Statistik die Aufgabe zu, die Güte der Messung zu überprüfen. Eine angemessene Ergebnisinterpretation und -diskussion schließlich ist nur gegeben, wenn man die Möglichkeiten und Grenzen statistischer Analysen genau kennt.

1.2 Grundbegriffe der Statistik

Die Statistik ist eine formale Wissenschaft, die auf unterschiedliche Lebensbereiche angewendet werden kann. So veröffentlicht das Statistische Bundesamt Angaben über den Verkehr, die Wirtschaft, die Familiensituation, das Bildungswesen usw. Entsprechend bildet die Statistik u. a. in den sozialwissenschaftlichen Wissenschaftsdisziplinen Psychologie, Soziologie, Pädagogik/Erziehungswissenschaften, Wirtschaftswissenschaften, Medizin und auch den quantitativ ausgerichteten Disziplinen der Sportwissenschaft das formale Instrumentarium.

Als formale Wissenschaft ist die Statistik auf Grundbegriffe angewiesen, die für die unterschiedlichen Lebensbereiche und Problemstellungen dann inhaltlich gefüllt werden müssen:

Als Grundgesamtheit wird die Menge aller theoretisch erfassbaren Objekte (z. B. Individuen) für einen Problembereich angesehen. Bei Wahlen stellt z. B. die Gesamtwählerschaft die Grundgesamtheit (Population) dar. Für Fragestellungen zum organisierten Sport in Deutschland bilden die Mitglieder des Deutschen Olympischen Sportbundes diese Grundgesamtheit.